Homology of the NifS family of proteins to a new class of pyridoxal phosphate-dependent enzymes.
نویسندگان
چکیده
Iterative profile sequence analysis reveals a remote homology of peroxisomal serine-pyruvate aminotransferases from mammals to the small subunit of soluble hydrogenases from cyanobacteria, an isopenicillin N epimerase, the NifS gene products from bacteria and yeast, and the phosphoserine aminotransferase family. All members of this new class whose function is known are pyridoxal phosphate-dependent enzymes, yet they have distinct catalytic activities. Upon alignment, a lysine around position 200 remains invariant and is predicted to be the pyridoxal phosphate-binding residue. Based on the detected homology, it is predicted that NifS has also a pyridoxal phosphate-dependent serine (or related) aminotransferase function associated with nitrogen economy and/or protection during nitrogen fixation.
منابع مشابه
The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase.
NifS-like proteins are cysteine desulphurases required for the mobilization of sulphur from cysteine. They are present in all organisms, where they are involved in iron-sulphur (Fe-S) cluster biosynthesis. In eukaryotes, these enzymes are present in mitochondria, which are the major site for Fe-S cluster assembly. The genome of the model plant Arabidopsis thaliana contains two putative NifS-lik...
متن کاملEvolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes
Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their subs...
متن کاملCharacterization of a NifS-like chloroplast protein from Arabidopsis. Implications for its role in sulfur and selenium metabolism.
NifS-like proteins catalyze the formation of elemental sulfur (S) and alanine from cysteine (Cys) or of elemental selenium (Se) and alanine from seleno-Cys. Cys desulfurase activity is required to produce the S of iron (Fe)-S clusters, whereas seleno-Cys lyase activity is needed for the incorporation of Se in selenoproteins. In plants, the chloroplast is the location of (seleno) Cys formation a...
متن کاملEvolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases.
It is generally accepted that ancient organisms must have possessed small genomes producing fewer gene products than contemporary organisms. Since the evolution of high specificity is surely a demanding process, primitive enzymes are likely to have been broad-specificity catalysts, utilizing a family of related substrates and producing a family of related products (67). Events of gene duplicati...
متن کاملMOLECULAR MODELING AND NMR STUDY OF HISTDINIE AND ITS ANALOGUES AS , PYRIDOXAL 5 '-PHOSPHATE DEPENDENT HISTIDINE DECARBOXYLASE INHIBITORS
Molecular modeling analysis of charge density and heat of fornation by PM3 method as well as C, H NMR and 2D-NMR measurements of histidine (substrate) and some of its derivatives as histidine decarboxylase inhibitors were performed. It was established that the atom, usually nitrogen, which forms internal aldimine with pyridoxal5 -phosphate (PLP), (coenzyme), has negative and almost equal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEBS letters
دوره 322 2 شماره
صفحات -
تاریخ انتشار 1993